
Cross-Site Request Forgery
All You Need to Know

• Continuously ranked in the OWASP Top 10 (until the 2017 release)
• CSRF is often confusing for software engineers
• High percentage of applications do not have proper CSRF protections

in place
• If your web applications use cookie-based authentication, then you still

have to address CSRF
• Modern frameworks have helped move CSRF from the OWASP Top 10
• Misconfigurations in frameworks such as Spring Boot, .NET MVC /

Core, and NodeJS lead to most of the CSRF vulnerabilities identified in
our assessments

Introduction to Cross-Site Forgery

What is Cross-Site Request Forgery

Cross-Site Request Forgery – What is it?

Cross-Site Request Forgery (CSRF) is an attack that
abuses session management and tricks the browser into

performing an attacker-controlled action

In order to show you how this
works, you must understand
session management in web
applications. Let’s explore…

Session Management

• The HTTP protocol is a stateless protocol
Ø The web application has no memory of previous requests or responses

• Many web applications rely on cookies to perform session management and
appear stateful

• Logging into an application results in an authentication cookie being sent back to
your browser, which identifies your user account

• As you navigate the website going forward, the browser sees that you are making
a request to the application and sends the back the cookie

• This cookie tells the application the identity and account of the current user

Simply put, the cookie provides the
application memory of your interaction with
their site and achieves session management

How does this relate to CSRF?
Example: You are doing some online banking

You go to your bank, MyBank.com. You log in and MyBank.com sets a
cookie in your browser. When you go to deposit a check, you scan a
picture of the check and you send that image to your bank to deposit the
check. Your browser, seeing that you are making a request to MyBank.com
helpfully adds in your session cookie. This allows MyBank.com to know
that this request came from your account.

Let’s explore the example
above and apply it to CSRF

CSRF Example

• Most users open one or more tabs in their browser
window at a time.

• If you open a new tab and browse to a new website,
Attacker.com, then you are opening yourself up to
CSRF attacks.

• What you don’t know when you go to Attacker.com
is that Attacker.com makes a request to
MyBank.com to transfer $10,000 from your bank
account to the attacker’s bank account (also known
as a cross-post).

• The request came from your browser, but it
originated from AttackerControlled.com.

Browser Actions from the Example

1) The browser sees a request from MyBank.com and
“helpfully” inserts the session cookie

2) MyBank.com sees the request and transfers the $10,000

3) You were logged into MyBank.com when you visited
Attacker.com

4) Evil Site, Attacker.com sent the forged request (“Request
Forgery” in CSRF)

5) However, from the bank’s perspective, this came from your
account

Browser Actions from the example, cont.

CSRF OWASP Top 10 and Attacks

Cross-Site Forgery Request and the OWASP Top 10

• CSRF vulnerabilities were very widespread 10 years ago
• OWASP first ranked CSRF #5 in the 2007 Top 10 list.
• In 2010, CSRF remained in the #5 position.

• In 2013, CSRF moved down to the #8 position before dropping from
the list in the 2017 list.

• Modern Single Page Applications (SPA) may not store authentication
data in cookies. Instead, authentication data may be stored in the
browser’s HTML5 session storage database.

• This eliminates CSRF because the browser will not attach the user's
authentication cookie to forged requests.

• Secure frameworks (e.g., Spring Boot, .NET, and NodeJS) have built-in
protection for CSRF.

Cross-Site Forgery Request and the OWASP Top 10

Why did it drop from the Top 10?
Why is this still relevant?

If you are relying on secure framework
configurations, security teams MUST review

and scan for CSRF misconfigurations

Well-known CSRF Attacks
There have been several major security breaches that occurred due
to the exploitation of CSRF vulnerabilities:

1. Attack in Brazil against TP-link modems 1
Modem admin screen allows attackers to change the DNS server
address of a victim’s TP-link router. Attackers then control DNS
queries sent to the router leaving victims vulnerable to malware
distribution and man-in-the-middle attacks

2. GoDaddy 2
DNS management interface allows attacks to edit DNS
nameserves, zone, and renewal settings

3. PayPal 3
User profile interface allows attackers to change a user’s profile
image

Protection against CSRF Attacks

Protecting a Site from Cross-Site Request Forgery Attacks

• The most common CSRF defense
uses synchronization tokens, aka,
anti-CSRF tokens to make
requests unique.

• These tokens contain a large
random string that is placed into
a hidden form field.

• Requests to the application will
contain the large random string.

• The server is able to verify the
token value before processing
the request

Attackers will not know the
random token

Which allows the server to
identify forged requests and
deny the requested action

Protecting a Site from Cross-Site Request Forgery Attacks

Alternatively, some applications do
not use cookies for authentication

Storing authentication tokens, such
as JSON Web Tokens (JWT), in the
HTML5 session store prevents the
browser from accidentally sending
the token during a forged request.

This configuration is not
vulnerable to CSRF, but does
elevate the risk of other
attacks like Cross-Site
Scripting.

Protecting a Site from Cross-Site Request Forgery Attacks

Using a CSRF Token

• CSRF Tokens must be unique per request or per session
• Must be placed into the browser’s hidden form field
• Cannot be stored solely in a cookie (if they are placed into a cookie, the

authentication cookies and token will automatically be sent by the
browser and the protection is defeated)

• The CSRF protection provided by .NET MVC places the token into a
hidden form field and cookie. This allows the server to compare the
two values on the server-side and avoid tracking CSRF tokens in
session variables

Must be protected from the attacker to be effective.
Applications vulnerable to Cross-Site Scripting can allow attackers

to steal CSRF tokens and submit a valid forged request.

Summary

In Summary

• Despite being removed from the 2017 OWASP Top 10, CSRF still requires
the attention of application and security teams

• There are simply too many legacy applications and misconfigured
framework options to ignore the issue

• Our security assessments still identify CSRF vulnerabilities in over 50% of
web applications

If your team needs help understanding and reviewing
your applications for CSRF, contact us to find out more

about our application security assessments.

About Cypress Data Defense:

Our goal is to help organizations secure their IT development and
operations using a pragmatic, risk-based approach. The diverse

background of our founders allows us to apply security controls to
governance, networks, and applications across the enterprise.

Contact us to learn more!

https://www.cypressdatadefense.com/contact/

Email: info@cypressdatadefense.com

Phone Number: 720.588.8133

References:

¹ “Attack hijacks DNS settings on home routers in Brazil”

Retrieved from: https://www.pcworld.com/article/2602040/attack-hijacks-dns-settings-on-home-routers-in-brazil.html

² “CSRF Flaw Allowed Attackers to Hijack GoDaddy Domains”

Retrieved from: https://www.securityweek.com/csrf-flaw-allowed-attackers-hijack-godaddy-domains

³ “Paypal Fixes CSRF Vulnerability in Paypal.me”

Retrieved from: https://threatpost.com/paypal-fixes-csrf-vulnerability-in-paypal-me/119435/

“CSRF Attacks”

Retrieved from: https://docs.spring.io/spring-security/site/docs/current/reference/html/csrf.html

“Prevent Cross-Site Request Forgery attacks in ASP.NET Core

Retrieved from: https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery

“Expressjs /csurf”

Retrieved from: https://github.com/expressjs/csurf

https://www.pcworld.com/article/2602040/attack-hijacks-dns-settings-on-home-routers-in-brazil.html
https://www.securityweek.com/csrf-flaw-allowed-attackers-hijack-godaddy-domains
https://threatpost.com/paypal-fixes-csrf-vulnerability-in-paypal-me/119435/
https://docs.spring.io/spring-security/site/docs/current/reference/html/csrf.html
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://github.com/expressjs/csurf

